Tsien RY. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry. 1980 May 27;19(11):2396-404. doi: 10.1021/bi00552a018
1
Clementi EA, Marks LR, Roche-Håkansson H, Håkansson AP. Monitoring changes in membrane polarity, membrane integrity, and intracellular ion concentrations in Streptococcus pneumoniae using fluorescent dyes. J Vis Exp. 2014 Feb 17;(84):e51008. doi: 10.3791/51008
Cell Type: Bacteria
2
Rink TJ, Tsien RY, Pozzan T. Cytoplasmic pH and free Mg2+ in lymphocytes. J Cell Biol. 1 October 1982; 95 (1): 189–196.
3
Oernbo, Eva K., et al. "Membrane transporters control cerebrospinal fluid formation independently of conventional osmosis to modulate intracranial pressure." Fluids and Barriers of the CNS 19.1 (2022): 65.
Target: NHE1
Cell Type: Choroid Plexus
Application: Fluorescence imaging
4
Lee, D.; Hong, J.H. Modulation of Lysosomal Cl− Mediates Migration and Apoptosis through the TRPML1 as a Lysosomal Cl− Sensor. Cells 2023, 12, 1835.
Target: TRPML1
Cell Type: Cancer cells
Application: Fluorescence imaging
5
Weaver CD, Harden D, Dworetzky SI, Robertson B, Knox RJ. A thallium-sensitive, fluorescence-based assay for detecting and characterizing potassium channel modulators in mammalian cells. J Biomol Screen. 2004 Dec;9(8):671-7. doi: 10.1177/1087057104268749
Target: KCNQ2, SK3
Cell Type: HEK-293
Application: High-throughput screening
6
Weaver CD. Thallium Flux Assay for Measuring the Activity of Monovalent Cation Channels and Transporters. Methods Mol Biol. 2018;1684:105-114. doi: 10.1007/978-1-4939-7362-0_9
Target: Kir3.1, Kir3.2
Cell Type: HEK-293
Application: High-throughput screening
7
Carmosino M, Rizzo F, Torretta S, Procino G, Svelto M. High-throughput fluorescent-based NKCC functional assay in adherent epithelial cells. BMC Cell Biol. 2013 Mar 18;14:16. doi: 10.1186/1471-2121-14-16
Target: NKCC2
Cell Type: Epithelial cells
Application: High-throughput screening
8
Du Y, Days E, Romaine I, Abney KK, Kaufmann K, Sulikowski G, Stauffer S, Lindsley CW, Weaver CD. Development and validation of a thallium flux-based functional assay for the sodium channel NaV1.7 and its utility for lead discovery and compound profiling. ACS Chem Neurosci. 2015 Jun 17;6(6):871-8. doi: 10.1021/acschemneuro.5b00004
Target: NaV1.7
Cell Type: HEK-293
Application: High-throughput screening
9
Zhang D, Gopalakrishnan SM, Freiberg G, Surowy CS. A thallium transport FLIPR-based assay for the identification of KCC2-positive modulators. J Biomol Screen. 2010 Feb;15(2):177-84. doi: 10.1177/1087057109355708
Target: KCC2
Cell Type: HEK-293
Application: High-throughput screening
10
Niswender CM, Johnson KA, Luo Q, Ayala JE, Kim C, Conn PJ, Weaver CD. A novel assay of Gi/o-linked G protein-coupled receptor coupling to potassium channels provides new insights into the pharmacology of the group III metabotropic glutamate receptors. Mol Pharmacol. 2008 Apr;73(4):1213-24. doi: 10.1124/mol.107.041053
Target: Glutamate receptors, Muscarinic receptors
Cell Type: HEK-293
Application: High-throughput screening
11
Delpire E, Days E, Lewis LM, Mi D, Kim K, Lindsley CW, Weaver CD. Small-molecule screen identifies inhibitors of the neuronal K-Cl cotransporter KCC2. Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5383-8. doi: 10.1073/pnas.0812756106
Target: KCC2, NKCC1
Cell Type: HEK-293
Application: High-throughput screening
12
Schmalhofer WA, Swensen AM, Thomas BS, Felix JP, Haedo RJ, Solly K, Kiss L, Kaczorowski GJ, Garcia ML. A pharmacologically validated, high-capacity, functional thallium flux assay for the human Ether-à-go-go related gene potassium channel. Assay Drug Dev Technol. 2010 Dec;8(6):714-26. doi: 10.1089/adt.2010.0351
Target: Kv11.1 (hERG)
Application: High-throughput screening
13
Lv, Xiaoyu, et al. "Clinical and functional characterization of a novel KCNJ11 (c. 101G> A, p. R34H) mutation associated with maturity-onset diabetes mellitus of the young type 13." Endocrine (2024): 1-13.
Target: KCNJ11
Cell Type: HEK-293
14
Li, Kangjun, et al. "Discovery and characterization of VU0542270, the first selective inhibitor of vascular Kir6. 1/SUR2B KATP channels." Molecular Pharmacology 105.3 (2024): 202-212.
Target: Kir6.1
Cell Type: HEK-293
Application: High-throughput screening
15
Bang, Sangsu et al. “Satellite glial GPR37L1 regulates maresin and potassium channel signaling for pain control.” bioRxiv : the preprint server for biology 2023.12.03.569787. 5 Dec. 2023, doi:10.1101/2023.12.03.569787
Target: Kir4.1, GPR37L1
Cell Type: DRGs, Glial cells
Application: Fluorescence imaging
16
McClenahan, Samantha J et al. “VU6036720: The First Potent and Selective In Vitro Inhibitor of Heteromeric Kir4.1/5.1 Inward Rectifier Potassium Channels.” Molecular pharmacology vol. 101,5 (2022): 357-370. doi:10.1124/molpharm.121.000464
Target: Kir4.1, Kir5.1
Cell Type: HEK-293
Application: High-throughput screening
17
Papadopoulos, N. G., Dedoussis, G. V., Spanakos, G., Gritzapis, A. D., Baxevanis, C. N., Papamichail, M. An improved fluorescence assay for the determination of lymphocyte-mediated cytotoxicity using flow cytometry. Journal of immunological methods. 1994. 177(1-2), 101–111.
18
A.W. Hayes, Ed., Principles and Methods of Toxicology, Third Edition, Raven Press (1994) pp. 1231–1258.
19
Glavinas H, von Richter O, Vojnits K, Mehn D, Wilhelm I, Nagy T, Janossy J, Krizbai I, Couraud P, Krajcsi P. (2011) Calcein assay: a high-throughput method to assess P-gp inhibition. Xenobiotica. 2011. 41(8):712-9.
20
Papadopoulos, N. G., Dedoussis, G. V., Spanakos, G., Gritzapis, A. D., Baxevanis, C. N., Papamichail, M. An improved fluorescence assay for the determination of lymphocyte-mediated cytotoxicity using flow cytometry. Journal of immunological methods. 1994. 177(1-2), 101–111
21
A.W. Hayes, Ed., Principles and Methods of Toxicology, Third Edition, Raven Press (1994) pp. 1231–1258
22
Minta A, Kao JP, Tsien RY. Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J Biol Chem. 1989 May 15;264(14):8171-8.
23
Sliwoski G, Schubert M, Stichel J, Weaver D, Beck-Sickinger AG, Meiler J. Discovery of Small-Molecule Modulators of the Human Y4 Receptor. PLoS One. 2016. 11(6):e0157146.
Target: Y1R, Y2R, Y4R, Y5R
Cell Type: COS-7
Application: High-throughput screening
24
Flanagan, Thomas W., et al. "Serotonin-2 Receptor Agonists Produce Anti-inflammatory Effects through Functionally Selective Mechanisms That Involve the Suppression of Disease-Induced Arginase 1 Expression." ACS Pharmacology & Translational Science (2024).
Target: Serotonin receptor
Cell Type: HEK-293
Application: High-throughput screening
25
Kaar, A., Weir, M. P., & Rae, M. G. Altered Neuronal Group 1 Metabotropic Glutamate Receptor-and Endoplasmic Reticulum-Mediated Ca2+ Signaling in Two Rodent Models of Alzheimer's Disease. Available at SSRN 4484605.
Target: Glutamate Receptors
Cell Type: Neurons
Application: Fluorescence imaging
26
Minta A, Kao JP, Tsien RY. Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J Biol Chem. 1989 May 15;264(14):8171-8
27
Hagen BM, Boyman L, Kao JP, Lederer WJ. A comparative assessment of fluo Ca2+ indicators in rat ventricular myocytes. Cell Calcium. 2012 Aug;52(2):170-81. doi: 10.1016/j.ceca.2012.05.010
Target: Calcium transients
Cell Type: Cardiomyocytes
28
Thomas D, Tovey SC, Collins TJ, Bootman MD, Berridge MJ, Lipp P. A comparison of fluorescent Ca2+ indicator properties and their use in measuring elementary and global Ca2+ signals. Cell Calcium. 2000 Oct;28(4):213-23. doi: 10.1054/ceca.2000.0152
Target: Intracellular calibration, Histamine receptors
Cell Type: HeLa cells
Application: Fluorescence microscopy
29
Donnadieu E, Bourguignon LY. Ca2+ signaling in endothelial cells stimulated by bradykinin: Ca2+ measurement in the mitochondria and the cytosol by confocal microscopy. Cell Calcium. 1996 Jul;20(1):53-61. doi: 10.1016/s0143-4160(96)90050-0
Target: Bradykinin receptor
Cell Type: Endothelial cells
Application: Confocal microscopy
30
Loughrey CM, MacEachern KE, Cooper J, Smith GL. Measurement of the dissociation constant of Fluo-3 for Ca2+ in isolated rabbit cardiomyocytes using Ca2+ wave characteristics. Cell Calcium. 2003 Jul;34(1):1-9. doi: 10.1016/s0143-4160(03)00012-
Target: Calcium transients
Cell Type: Cardiomyocytes
31
Vandenberghe PA, Ceuppens JL. Flow cytometric measurement of cytoplasmic free calcium in human peripheral blood T lymphocytes with fluo-3, a new fluorescent calcium indicator. J Immunol Methods. 1990 Mar 9;127(2):197-205. doi: 10.1016/0022-1759(90)90069-8
Cell Type: Lymphocytes
Application: Flow Cytometry
32
Aliotta, Alessandro, Debora Bertaggia Calderara, and Lorenzo Alberio. "Flow cytometric monitoring of dynamic cytosolic calcium, sodium, and potassium fluxes following platelet activation." Cytometry Part A 97.9 (2020): 933-944.
Cell Type: Platelets
Application: Flow Cytometry
33
Schepers E, Glorieux G, Dhondt A, Leybaert L, Vanholder R. Flow cytometric calcium flux assay: evaluation of cytoplasmic calcium kinetics in whole blood leukocytes. J Immunol Methods. 2009 Aug 31;348(1-2):74-82. doi: 10.1016/j.jim.2009.07.002
Cell Type: Leukocytes
Application: Flow Cytometry
34
Gee KR, Brown KA, Chen WN, Bishop-Stewart J, Gray D, Johnson I. Chemical and physiological characterization of fluo-4 Ca(2+)-indicator dyes. Cell Calcium. 2000 Feb;27(2):97-106. doi: 10.1054/ceca.1999.0095
35
Bovo E, Dvornikov AV, Mazurek SR, de Tombe PP, Zima AV. Mechanisms of Ca²+ handling in zebrafish ventricular myocytes. Pflugers Arch. 2013 Dec;465(12):1775-84. doi: 10.1007/s00424-013-1312-2. Epub 2013 Jul 3. PMID: 23821298; PMCID: PMC4138713.
Target: Action potentials
Cell Type: Ventricular myocytes
Application: Confocal microscopy
36
Rodriguez AL, Grier MD, Jones CK, Herman EJ, Kane AS, Smith RL, Williams R, Zhou Y, Marlo JE, Days EL, Blatt TN, Jadhav S, Menon UN, Vinson PN, Rook JM, Stauffer SR, Niswender CM, Lindsley CW, Weaver CD, Conn PJ. Discovery of novel allosteric modulators of metabotropic glutamate receptor subtype 5 reveals chemical and functional diversity and in vivo activity in rat behavioral models of anxiolytic and antipsychotic activity. Mol Pharmacol. 2010. 78(6):1105-23.
Target: Glutamate receptors
Cell Type: HEK-293
Application: High-throughput screening
37
Zixiu Xiang 1, Analisa D Thompson, John T Brogan, Michael L Schulte, Bruce J Melancon, Debbie Mi, L Michelle Lewis, Bende Zou, Liya Yang, Ryan Morrison, Tammy Santomango, Frank Byers, Katrina Brewer, Jonathan S Aldrich, Haibo Yu, Eric S Dawson, Min Li, Owen McManus, Carrie K Jones, J Scott Daniels, Corey R Hopkins, Ximin Simon Xie, P Jeffrey Conn, C David Weaver, Craig W Lindsley. The Discovery and Characterization of ML218: A Novel, Centrally Active T-Type Calcium Channel Inhibitor with Robust Effects in STN Neurons and in a Rodent Model of Parkinson's Disease. ACS Chem Neurosci. 2011. 21;2(12):730-742. doi: 10.1021/cn200090z.
Target: CaV3.2, CaV3.3
Cell Type: HEK-293
Application: High-throughput screening
38
Clementi EA, Marks LR, Roche-Håkansson H, Håkansson AP. Monitoring changes in membrane polarity, membrane integrity, and intracellular ion concentrations in Streptococcus pneumoniae using fluorescent dyes. J Vis Exp. 2014 Feb 17;(84):e51008. doi: 10.3791/51008
Cell Type: Bacteria
Application: Fluorescence plate reader
39
"Vorndran C, Minta A, Poenie M. New fluorescent calcium indicators designed for cytosolic retention or measuring calcium near membranes. Biophys J. 1995 Nov;69(5):2112-24. doi: 10.1016/S0006-3495(95)80082-2"
40
Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440-50
41
Neher E. The use of fura-2 for estimating Ca buffers and Ca fluxes. Neuropharmacology. 1995 Nov;34(11):1423-42. doi: 10.1016/0028-3908(95)00144-u
42
"Sohya K, Kameyama K, Yanagawa Y, Obata K, Tsumoto T. GABAergic neurons are less selective to stimulus orientation than excitatory neurons in layer II/III of visual cortex, as revealed by in vivo functional Ca2+ imaging in transgenic mice. J Neurosci. 2007 Feb 21;27(8):2145-9. doi: 10.1523/JNEUROSCI.4641-06.2007"
Target: In vivo
Cell Type: Astrocytes, Neurons
Application: Multiphoton microscopy
43
Kumar KK, Lowe EW Jr, Aboud AA, Neely MD, Redha R, Bauer JA, Odak M, Weaver CD, Meiler J, Aschner M, Bowman AB. Cellular manganese content is developmentally regulated in human dopaminergic neurons. Sci Rep. 2014. 28;4:6801.
Target: Manganese modulators
Cell Type: Neurons
Application: Fluorescence plate reader
44
Lee, Jin Wook, et al. "Candesartan, an angiotensin-II receptor blocker, ameliorates insulin resistance and hepatosteatosis by reducing intracellular calcium overload and lipid accumulation." Experimental & molecular medicine 55.5 (2023): 910-925.
Cell Type: Cancer cells
Application: Confocal microscopy
45
Christodoulaki, Antonia, et al. "Pronuclear transfer rescues poor embryo development of in vitro-grown secondary mouse follicles." Human Reproduction Open 2024.1 (2024): hoae009.
Cell Type: Oocytes
Application: Fluorescence microscopy
46
Csordás, György, et al. "Supralinear Dependence of the IP3 Receptor-to-Mitochondria Local Ca2+ Transfer on the Endoplasmic Reticulum Ca2+ Loading." Contact 7 (2024): 25152564241229273.
Target: IP3 Receptor, MICU1
Cell Type: RBL-2H3
Application: Fluorescence microscopy
47
Olde Engberink, Anneke H O et al. “Aging affects GABAergic function and calcium homeostasis in the mammalian central clock.” Frontiers in neuroscience vol. 17 1178457. 16 May. 2023,
Target: Calcium transients
Cell Type: Neurons, Brain slices
Application: Fluorescence microscopy
48
Brito, Lara Barroso, et al. "Sens-ocular model: Cell-based assay to evaluate eye stinging potential of chemicals and baby cosmetic formulations." Toxicology in Vitro 98 (2024): 105824.
Target: TRPV1
Cell Type: HEK-293
Application: High-throughput screening
49
Daniluk, Jan, and Thomas Voets. “pH-dependent modulation of TRPV1 by modality-selective antagonists.” British journal of pharmacology vol. 180,21 (2023): 2750-2761.
Target: TRPV1
Cell Type: HEK-293
Application: Fluorescence microscopy
50
Lee, D.; Hong, J.H. Modulation of Lysosomal Cl− Mediates Migration and Apoptosis through the TRPML1 as a Lysosomal Cl− Sensor. Cells 2023, 12, 1835.
Target: TRPML1
Cell Type: Cancer cells
Application: Fluorescence microscopy
51
Vorndran C, Minta A, Poenie M. New fluorescent calcium indicators designed for cytosolic retention or measuring calcium near membranes. Biophys J. 1995 Nov;69(5):2112-24. doi: 10.1016/S0006-3495(95)80082-2
52
Hashitani H, Yanai Y, Suzuki H. Role of interstitial cells and gap junctions in the transmission of spontaneous Ca2+ signals in detrusor smooth muscles of the guinea-pig urinary bladder. J Physiol. 2004 Sep 1;559(Pt 2):567-81. doi: 10.1113/jphysiol.2004.065136
Target: Calcium transients
Cell Type: Muscle tissue
Application: Fluorescence microscopy
53
Groten CJ, Rebane JT, Hodgson HM, Chauhan AK, Blohm G, Magoski NS. Ca2+ removal by the plasma membrane Ca2+-ATPase influences the contribution of mitochondria to activity-dependent Ca2+ dynamics in Aplysia neuroendocrine cells. J Neurophysiol. 2016 Jun 1;115(5):2615-34. doi: 10.1152/jn.00494.2015.
Target: Ca2+-ATPase, Calcium transients
Cell Type: Neurons
Application: Fluorescence microscopy
54
Country, Michael W., and Michael G. Jonz. "Mitochondrial KATP channels stabilize intracellular Ca2+ during hypoxia in retinal horizontal cells of goldfish (Carassius auratus)." Journal of Experimental Biology 224.18 (2021): jeb242634.
Target: KATP
Cell Type: Neurons
Application: Fluorescence microscopy
55
Barbeau, Solène, et al. "Cell Confluence Modulates TRPV4 Channel Activity in Response to Hypoxia." Biomolecules 12.7 (2022): 954.
Target: TRPV4
Cell Type: HEK-293
Application: Fluorescence microscopy
56
Balboa, Diego, et al. "Functional, metabolic and transcriptional maturation of human pancreatic islets derived from stem cells." Nature biotechnology 40.7 (2022): 1042-1055.
Target: Calcium transients, KATP
Cell Type: Stem cells, Islets
Application: Fluorescence microscopy
57
Fantuzzi, Federica, et al. "In depth functional characterization of human induced pluripotent stem cell-derived beta cells in vitro and in vivo." Frontiers in Cell and Developmental Biology 10 (2022): 967765.
Target: Calcium transients, KATP
Cell Type: Stem cells, Beta cells
Application: Fluorescence microscopy
58
Ibrahim, Hazem, et al. "RFX6 haploinsufficiency predisposes to diabetes through impaired beta cell functionality." bioRxiv (2023): 2023-11.
Target: Calcium transients
Cell Type: Stem cells, Islets
Application: Fluorescence microscopy
59
Ghatge, Madankumar et al. “Mitochondrial calcium uniporter b deletion inhibits platelet function and reduces susceptibility to arterial thrombosis.” Journal of thrombosis and haemostasis : JTH vol. 21,8 (2023): 2163-2174.
Target: MCUb
Cell Type: Platelets
Application: Fluorescence plate reader
60
Kikuta S, Iguchi Y, Kakizaki T, Kobayashi K, Yanagawa Y, Takada M, Osanai M. Store-Operated Calcium Channels Are Involved in Spontaneous Slow Calcium Oscillations in Striatal Neurons. Front Cell Neurosci. 2019. 17;13:547.
Target: Store operated calcium channels, Ca2+-ATPase, calcium transients
Cell Type: Neurons, Brain slices
Application: Fluorescence microscopy
61
Christophe M. Lamy and Jean-Yves Chatton, Optical probing of sodium dynamics in neurons and astrocytes, NeuroImage, Volume 58, Issue 2, 2011, Pages 572-578, ISSN 1053-8119, https://doi.org/10.1016/j.neuroimage.2011.06.074
Target: Sodium transients
Cell Type: Neurons, Astrocytes, Brain tissue
Application: Fluorescence microscopy, multiphoton microscopy
62
"Theresa S. Rimmele, Anne-Bérengère Rocher, Joel Wellbourne-Wood, Jean-Yves Chatton, Control of Glutamate Transport by Extracellular Potassium: Basis for a Negative Feedback on Synaptic Transmission, Cerebral Cortex, Volume 27, Issue 6, June 2017, Pages 3272–3283, https://doi.org/10.1093/cercor/bhx078"
Target: Na+/K+-ATPase, GLT-1
Cell Type: Astrocytes, HEK-293
Application: Fluorescence microscopy
63
Azarias G, Kruusmägi M, Connor S, Akkuratov EE, Liu XL, Lyons D, Brismar H, Broberger C, Aperia A. A specific and essential role for Na,K-ATPase α3 in neurons co-expressing α1 and α3. J Biol Chem. 2013 Jan 25;288(4):2734-43. doi: 10.1074/jbc.M112.425785
Target: Na+/K+-ATPase
Cell Type: Neurons
Application: Fluorescence microscopy
64
Lopez, Ludivine et al. “Structure-function relationship of new peptides activating human Nav1.1.” Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie vol. 165 (2023): 115173.
Target: NaV1.1, NaV1.6, NaV1.7
Cell Type: HEK-293
Application: High-throughput screening
65
Meyer, Jan et al. “Rapid Fluorescence Lifetime Imaging Reveals That TRPV4 Channels Promote Dysregulation of Neuronal Na+ in Ischemia.” The Journal of neuroscience : the official journal of the Society for Neuroscience vol. 42,4 (2022): 552-566.
Target: TRPV4, Sodium transients
Cell Type: Neurons, Brain slices
Application: Fluorescence microscopy, Fluorescence lifetime imaging
66
NAUMANN, G., LIPPMANN, K. and EILERS, J. (2018), Photophysical properties of Na+‐indicator dyes suitable for quantitative two‐photon fluorescence‐lifetime measurements. Journal of Microscopy, 272: 136-144. https://doi.org/10.1111/jmi.12754
Application: Multiphoton microscopy, Fluorescence lifetime imaging
67
Tay B, Stewart TA, Davis FM, Deuis JR, Vetter I (2019) Development of a high-throughput fluorescent no-wash sodium influx assay. PLOS ONE 14(3): e0213751. https://doi.org/10.1371/journal.pone.0213751
Target: NaV1.1, NaV1.2, NaV1.3, NaV1.4, NaV1.5, NaV1.6, NaV1.7, NaV1.8, NaV1.9
Cell Type: HEK-293
Application: High-throughput screening
68
Yurinskaya VE, Aksenov ND, Moshkov AV, Goryachaya TS, Vereninov AA. Fluorometric Na+ Evaluation in Single Cells Using Flow Cytometry: Comparison with Flame Emission Assay. Cell Physiol Biochem. 2020 May 29;54(4):556-566. doi: 10.33594/000000239.
Cell Type: Monocytes
Application: Flow cytometry
69
Aliotta, A., Bertaggia Calderara, D. and Alberio, L. (2020), Flow Cytometric Monitoring of Dynamic Cytosolic Calcium, Sodium, and Potassium Fluxes Following Platelet Activation. Cytometry, 97: 933-944. https://doi.org/10.1002/cyto.a.24017
Cell Type: Platelets
Application: Flow cytometry
70
Yao L, Fan P, Jiang Z, Viatchenko-Karpinski S, Wu Y, Kornyeyev D, Hirakawa R, Budas GR, Rajamani S, Shryock JC, Belardinelli L. Nav1.5-dependent persistent Na+ influx activates CaMKII in rat ventricular myocytes and N1325S mice. Am J Physiol Cell Physiol. 2011 Sep;301(3):C577-86. doi: 10.1152/ajpcell.00125.2011
Target: NaV1.5
Cell Type: Cardiomyocytes
Application: Confocal microscopy
71
Shim, Bosung et al. “Canagliflozin, an Inhibitor of the Na+-Coupled D-Glucose Cotransporter, SGLT2, Inhibits Astrocyte Swelling and Brain Swelling in Cerebral Ischemia.” Cells vol. 12,18 2221. 6 Sep. 2023
Target: SGLT2
Cell Type: Astrocytes
Application: Fluorescence microscopy
72
Iamshanova, O., Mariot, P., Lehen’kyi, V. et al. Comparison of fluorescence probes for intracellular sodium imaging in prostate cancer cell lines. Eur Biophys J 45, 765–777 (2016). https://doi.org/10.1007/s00249-016-1173-7
Cell Type: Cancer cells
Application: Fluorescence microscopy
73
Filipis, L., & Canepari, M. (2021). Optical measurement of physiological sodium currents in the axon initial segment. The Journal of Physiology, 599(1), 49-66.
Target: Sodium transients
Cell Type: Neurons, Brain slices
Application: Fluorescence microscopy
74
(Protocol) Blömer, L. A., Canepari, M., & Filipis, L. (2021). Ultrafast Sodium Imaging of the Axon Initial Segment of Neurons in Mouse Brain Slices. Current Protocols, 1(3).
Target: Sodium transients
Cell Type: Neurons, Brain slices
Application: Fluorescence microscopy
75
Lee, H. P., Alisafaei, F., Adebawale, K., Chang, J., Shenoy, V. B., & Chaudhuri, O. (2021). The nuclear piston activates mechanosensitive ion channels to generate cell migration paths in confining microenvironments. Science Advances, 7(2).
Target: NHE-1, TRPV4
Cell Type: Stem cells
Application: Confocal microscopy
76
Bai, Liangliang, et al. "Replenishment of mitochondrial Na+ and H+ by ionophores potentiates cutaneous wound healing in diabetes." Materials Today Bio 26 (2024): 101056.
Target: Na+/K+-ATPase
Cell Type: Keratinocytes, HEK-293
Application: Confocal microscopy
77
Trum, Maximilian, et al. "Empagliflozin inhibits increased Na influx in atrial cardiomyocytes of patients with HFpEF." Cardiovascular Research (2024): cvae095.
Target: Na+/K+-ATPase
Cell Type: Cardiomyocytes
Application: Confocal microscopy
78
D’Andrea, Tiziano, et al. "Selective Reduction of Ca2+ Entry Through the Human NMDA Receptor: a Quantitative Study by Simultaneous Ca2+ and Na+ Imaging." Molecular Neurobiology (2024): 1-10.
Target: nAchR, NMDA receptor
Cell Type: HEK-293
Application: Fluorescence microscopy
79
Ozhathil, Lijo Cherian et al. “Identification of potent and selective small molecule inhibitors of the cation channel TRPM4.” British journal of pharmacology vol. 175,12 (2018): 2504-2519.
Target: TRPM4
Cell Type: HEK-293, cancer cells
Application: High-throughput screening
80
Dickerson, Matthew T., et al. "Gi/o protein-coupled receptor inhibition of beta-cell electrical excitability and insulin secretion depends on Na+/K+ ATPase activation." Nature Communications 13.1 (2022): 6461.
Target: Na+/K+-ATPase
Cell Type: Islets
Application: Fluorescence microscopy
81
Pape, Nils, and Christine R Rose. “Activation of TRPV4 channels promotes the loss of cellular ATP in organotypic slices of the mouse neocortex exposed to chemical ischemia.” The Journal of physiology vol. 601,14 (2023): 2975-2990.
Target: TRPV4
Cell Type: Astrocytes, Neurons, Brain slices
Application: Confocal microscopy
82
Clemente, N., Baroni, S., Fiorilla, S. et al. Boosting intracellular sodium selectively kills hepatocarcinoma cells and induces hepatocellular carcinoma tumor shrinkage in mice. Commun Biol 6, 574 (2023).
Cell Type: Cancer cells
Application: Fluorescence microscopy, Fluorescence plate reader
83
Loeck, Thorsten et al. “The context-dependent role of the Na+/Ca2+-exchanger (NCX) in pancreatic stellate cell migration.” Pflugers Archiv : European journal of physiology vol. 475,10 (2023): 1225-1240.
Target: NCX
Cell Type: Pancreatic stellate cells
Application: Fluorescence microscopy
84
Papadopoulos, N. G., Dedoussis, G. V., Spanakos, G., Gritzapis, A. D., Baxevanis, C. N., Papamichail, M. An improved fluorescence assay for the determination of lymphocyte-mediated cytotoxicity using flow cytometry. Journal of immunological methods. 1994. 177(1-2), 101–111
Cell Type: Lymphocytes
Application: Flow cytometry
85
Noblett, Alexander David, Kiheon Baek, and Laura J. Suggs. "Controlling nucleopeptide hydrogel self-assembly and formation for cell-culture scaffold applications." ACS Biomaterials Science & Engineering 7.6 (2021): 2605-2614.
Application: Fluorescence plate reader, Fluorescence imaging
86
A.W. Hayes, Ed., Principles and Methods of Toxicology, Third Edition, Raven Press (1994) pp. 1231–1258
87
Cossarizza A, Salvioli S. Flow cytometric analysis of mitochondrial membrane potential using JC-1. Curr Protoc Cytom. (2001). Chapter 9:Unit 9.14. (JC-1 protocol)
Application: Flow cytometry
88
Donaghy L, et. al. Reactive oxygen species in unstimulated hemocytes of the pacific oyster Crassostrea gigas: a mitochondrial involvement. PLoS One. (2012). 7(10).
89
"Chen CC, Hsieh DS, Huang KJ, et al. Improving anticancer efficacy of (-)-epigallocatechin-3-gallate gold nanoparticles in murine B16F10 melanoma cells. Drug Des Devel Ther. (2014). 8:459-474."
90
Rimmele TS, Chatton JY (2014) A Novel Optical Intracellular Imaging Approach for Potassium Dynamics in Astrocytes. PLOS ONE 9(10): e109243.
Cell Type: Astrocytes
Application: Fluorescence microscopy
91
Gigon, Lea, et al. "Membrane damage by MBP-1 is mediated by pore formation and amplified by mtDNA." Cell reports 43.4 (2024).
Cell Type: Epithelial cells
Application: Flow cytometry
92
Woo J, Jang MW, Lee J, Koh W, Mikoshiba K, Lee CJ. The molecular mechanism of synaptic activity-induced astrocytic volume transient. J Physiol. 2020 Oct;598(20):4555-4572. doi: 10.1113/JP279741
Target: K2P
Cell Type: Astrocytes, Neurons
Application: Fluorescence microscopy
93
Rana PS, Gibbons BA, Vereninov AA, Yurinskaya VE, Clements RJ, Model TA, Model MA. Calibration and characterization of intracellular Asante Potassium Green probes, APG-2 and APG-4. Anal Biochem. 2019 Feb 15;567:8-13. doi: 10.1016/j.ab.2018.11.024
Target: Na+/K+-ATPase
Cell Type: Monocytes, T cells
Application: Flow cytometry, Fluorescence microscopy
94
Hennes, Marc et al. “Collective polarization dynamics in bacterial colonies signify the occurrence of distinct subpopulations.” PLoS biology vol. 21,1 e3001960. 18 Jan. 2023
Cell Type: Bacteria
Application: Fluorescence microscopy
95
Mazzarda, Flavia et al. “Inflammasome Activation and IL-1β Release Triggered by Nanosecond Pulsed Electric Fields in Murine Innate Immune Cells and Skin.” Journal of immunology, vol. 212,2 (2024): 335-345.
Cell Type: Macrophages, HEK-293
Application: Fluorescence microscopy
96
May LM, Anggono V, Gooch HM, Jang SE, Matusica D, Kerbler GM, Meunier FA, Sah P, Coulson EJ. G-Protein-Coupled Inwardly Rectifying Potassium (GIRK) Channel Activation by the p75 Neurotrophin Receptor Is Required for Amyloid β Toxicity. Front Neurosci. 2017 Aug 8;11:455. doi: 10.3389/fnins.2017.00455
Target: GIRK, p75 neurotrophin receptor
Cell Type: Neurons
Application: Fluorescence microscopy
97
Andrew, S. C., Dumoux, M., & Hayward, R. D. (2021). Chlamydia Uses K+ Electrical Signalling to Orchestrate Host Sensing, Inter-Bacterial Communication and Differentiation. Microorganisms, 9(1), 173.
Cell Type: HeLa cells
Application: Confocal microscopy
98
Sawai, Yuuki et al. “Caveolin-1 forms a complex with P2X7 receptor and tunes P2X7-mediated ATP signaling in mouse bone marrow-derived macrophages.” American journal of physiology. Cell physiology vol. 326,1 (2024): C125-C142.
Target: P2X7
Cell Type: Macrophages
99
Ma, Panqin et al. “Mitochondrial Artificial K+ Channel Construction Using MPTPP@5F8 Nanoparticles for Overcoming Cancer Drug Resistance via Disrupting Cellular Ion Homeostasis.” Advanced healthcare materials vol. 13,2 (2024): e2302012
100
Park, Yunjeong et al. “Modulation of neuronal activity in cortical organoids with bioelectronic delivery of ions and neurotransmitters.” bioRxiv : the preprint server for biology 2023.06.10.544416. 10 Jun. 2023
Cell Type: Organoids
Application: Fluorescence microscopy, Bioelectronics
101
Immanuel, Camille N et al. “TWO PORE POTASSIUM CHANNEL TREK-1 (K2P2.1) REGULATES NLRP3 INFLAMMASOME ACTIVITY IN MACROPHAGES.” American journal of physiology. Lung cellular and molecular physiology, 10.1152/ajplung.00313.2023. 22 Jan. 2024
Target: K2P
Cell Type: Macrophages
102
Roy, B., Han, J., Hope, K. A., Peters, T. L., Palmer, G., & Reiter, L. T. (2020). An Unbiased Drug Screen for Seizure Suppressors in Duplication 15q Syndrome Reveals 5-HT1A and Dopamine Pathway Activation as Potential Therapies. Biological Psychiatry, 88(9), 698-709.
Target: Na+/K+-ATPase, 5HT1A
Cell Type: Glial cells
Application: Fluorescence microscopy
103
Ziglari, T., Wang, Z., & Holian, A. (2021). Contribution of Particle-Induced Lysosomal Membrane Hyperpolarization to Lysosomal Membrane Permeabilization. International journal of molecular sciences, 22(5), 2277.
Cell Type: Macrophages
Application: Fluorescence plate reader
104
Wang, Yingqin et al. “Inhibition of sphingosine-1-phosphate receptor 3 suppresses ATP-induced NLRP3 inflammasome activation in macrophages via TWIK2-mediated potassium efflux.” Frontiers in immunology vol. 14 1090202. 31 Jan. 2023
Target: TWIK-2, Sphingosine-1-phosphate receptor 3
Cell Type: Macrophages
Application: Confocal microscopy
105
de Sá, K.S.G., Amaral, L.A., Rodrigues, T.S. et al. Gasdermin-D activation promotes NLRP3 activation and host resistance to Leishmania infection. Nat Commun 14, 1049 (2023).
Target: NLRP3
Cell Type: Macrophages
Application: Fluorescence plate reader
106
Hyereen KangSeong Woo ChoiJoo Young KimSung Joon KimMyung-Shik Lee. 2023. ER-to-lysosome Ca2+ refilling followed by K+ efflux-coupled store-operated Ca2+ entry in inflammasome activation and metabolic inflammation. eLife 12:RP87561
Cell Type: Macrophages
Application: Confocal microscopy
107
Shamipour, Shayan et al. “Yolk granule fusion and microtubule aster formation regulate cortical granule translocation and exocytosis in zebrafish oocytes.” PLoS biology vol. 21,6 e3002146. 8 Jun. 2023
Target: Vesicles
Cell Type: Oocytes
Application: Fluorescence microscopy
108
Liu, J., Li, F., Wang, Y. et al. A sensitive and specific nanosensor for monitoring extracellular potassium levels in the brain. Nat. Nanotechnol. 15, 321–330 (2020).
Target: Extracellular potassium
Application: In vivo
109
Rana PS, Gibbons BA, Vereninov AA, Yurinskaya VE, Clements RJ, Model TA, Model MA. Calibration and characterization of intracellular Asante Potassium Green probes, APG-2 and APG-4. Anal Biochem. 2019 Feb 15;567:8-13. doi: 10.1016/j.ab.2018.11.024
Target: Na+/K+-ATPase
Cell Type: Monocytes, T cells
Application: Flow cytometry, Fluorescence microscopy
110
Kilic K, Karatas H, Dönmez-Demir B, Eren-Kocak E, Gursoy-Ozdemir Y, Can A, Petit JM, Magistretti PJ, Dalkara T. Inadequate brain glycogen or sleep increases spreading depression susceptibility. Ann Neurol. 2018 Jan;83(1):61-73. doi: 10.1002/ana.25122
Target: Extracellular potassium
Application: In vivo
111
Wellbourne-Wood J, Rimmele TS, Chatton JY. Imaging extracellular potassium dynamics in brain tissue using a potassium-sensitive nanosensor. Neurophotonics. 2017 Jan;4(1):015002. doi: 10.1117/1.NPh.4.1.015002
Target: Extracellular potassium
Application: In vivo
112
Prindle, A., Liu, J., Asally, M. et al. Ion channels enable electrical communication in bacterial communities. Nature 527, 59–63 (2015).
Target: YugO
Cell Type: Bacteria
Application: Fluorescence microscopy
113
Collier, Camille et al. “Intracellular K+ Limits T-cell Exhaustion and Preserves Antitumor Function.” Cancer immunology research vol. 12,1 (2024): 36-47.
Target: Na+/K+-ATPase
Cell Type: T cells
Application: Flow cytometry
114
Ong, S. T., Ng, A. S., Ng, X. R., Zhuang, Z., Wong, B. H. S., Prasannan, P., ... & Chandy, K. G. (2019). Extracellular K+ dampens T cell functions: implications for immune suppression in the tumor microenvironment. Bioelectricity, 1(3), 169-179.
Cell Type: T cells
Application: Flow cytometry, confocal microscopy
115
Humphries J, Xiong L, Liu J, Prindle A, Yuan F, Arjes HA, Tsimring L, Süel GM. Species-Independent Attraction to Biofilms through Electrical Signaling. Cell. 2017 Jan 12;168(1-2):200-209.e12. doi: 10.1016/j.cell.2016.12.014
Target: Extracellular potassium
Cell Type: Bacteria
Application: Fluorescence microscopy
116
Minta A, Tsien RY. Fluorescent indicators for cytosolic sodium. J Biol Chem. 1989 Nov 15;264(32):19449-57
117
Clementi EA, Marks LR, Roche-Håkansson H, Håkansson AP. Monitoring changes in membrane polarity, membrane integrity, and intracellular ion concentrations in Streptococcus pneumoniae using fluorescent dyes. J Vis Exp. 2014 Feb 17;(84):e51008. doi: 10.3791/51008
Cell Type: Bacteria
Application: Fluorescence plate reader
118
Andersson B, Janson V, Behnam-Motlagh P, Henriksson R, Grankvist K. Induction of apoptosis by intracellular potassium ion depletion: using the fluorescent dye PBFI in a 96-well plate method in cultured lung cancer cells. Toxicol In Vitro. 2006 Sep;20(6):986-94. doi: 10.1016/j.tiv.2005.12.013
Cell Type: Cancer cells
Application: Fluorescence plate reader
119
Bezine M, Debbabi M, Nury T, Ben-Khalifa R, Samadi M, Cherkaoui-Malki M, Vejux A, Raas Q, de Sèze J, Moreau T, El-Ayeb M, Lizard G. Evidence of K+ homeostasis disruption in cellular dysfunction triggered by 7-ketocholesterol, 24S-hydroxycholesterol, and tetracosanoic acid (C24:0) in 158N murine oligodendrocytes. Chem Phys Lipids. 2017 Oct;207(Pt B):135-150. doi: 10.1016/j.chemphyslip.2017.03.006
Cell Type: Glial cells
120
Chung C, Pethig R, Smith S, Waterfall M. Intracellular potassium under osmotic stress determines the dielectrophoresis cross-over frequency of murine myeloma cells in the MHz range. Electrophoresis. 2018 Apr;39(7):989-997. doi: 10.1002/elps.201700433
Cell Type: Cancer cells
Application: Flow cytometry
121
Olsen LF, Stock RP, Bagatolli LA. Glycolytic oscillations and intracellular K+ concentration are strongly coupled in the yeast Saccharomyces cerevisiae. Arch Biochem Biophys. 2020 Mar 15;681:108257. doi: 10.1016/j.abb.2020.108257
Cell Type: Yeast
122
Minta A, Tsien RY. Fluorescent indicators for cytosolic sodium. J Biol Chem. 1989 Nov 15;264(32):19449-57
123
Dvorzhak A, Vagner T, Kirmse K, Grantyn R. Functional Indicators of Glutamate Transport in Single Striatal Astrocytes and the Influence of Kir4.1 in Normal and Huntington Mice. J Neurosci. 2016 May 4;36(18):4959-75. doi: 10.1523/JNEUROSCI.0316-16.2016
Target: Glutamate transporter
Cell Type: Astrocytes
Application: Fluorescence microscopy
124
Oernbo, Eva K., et al. "Membrane transporters control cerebrospinal fluid formation independently of conventional osmosis to modulate intracranial pressure." Fluids and Barriers of the CNS 19.1 (2022): 65.
Target: NKCC1, NHE1, Na+/K+-ATPase, NBCe2
Cell Type: Choroid plexus
125
Meyer, Dylan J., et al. "The Na+/K+ pump dominates control of glycolysis in hippocampal dentate granule cells." Elife 11 (2022): e81645.
Target: Na+/K+-ATPase
126
Eitelmann, Sara, et al. "Changes in astroglial K+ upon brief periods of energy deprivation in the mouse neocortex." International journal of molecular sciences 23.9 (2022): 4836.
Cell Type: Glial cells
Application: Fluorescence imaging
127
Borin M, Siffert W. Stimulation by thrombin increases the cytosolic free Na+ concentration in human platelets. Studies with the novel fluorescent cytosolic Na+ indicator sodium-binding benzofuran isophthalate. J Biol Chem. 1990 Nov 15;265(32):19543-50
Cell Type: Platelets
128
Weaver CD, Harden D, Dworetzky SI, Robertson B, Knox RJ. A thallium-sensitive, fluorescence-based assay for detecting and characterizing potassium channel modulators in mammalian cells. J Biomol Screen. 2004 Dec;9(8):671-7. doi: 10.1177/1087057104268749
Target: KCa2.3, Kv7.2
Cell Type: HEK-293
Application: High-throughput screening
129
Weaver CD. Thallium Flux Assay for Measuring the Activity of Monovalent Cation Channels and Transporters. Methods Mol Biol. 2018;1684:105-114. doi: 10.1007/978-1-4939-7362-0_9
Target: Kir3.1, Kir3.2
Cell Type: HEK-293
Application: High-throughput screening
130
Carmosino M, Rizzo F, Torretta S, Procino G, Svelto M. High-throughput fluorescent-based NKCC functional assay in adherent epithelial cells. BMC Cell Biol. 2013 Mar 18;14:16. doi: 10.1186/1471-2121-14-16
Target: NKCC
Cell Type: Epithelial cells
Application: High-throughput screening
131
"Du Y, Days E, Romaine I, Abney KK, Kaufmann K, Sulikowski G, Stauffer S, Lindsley CW, Weaver CD. Development and validation of a thallium flux-based functional assay for the sodium channel NaV1.7 and its utility for lead discovery and compound profiling. ACS Chem Neurosci. 2015 Jun 17;6(6):871-8. doi: 10.1021/acschemneuro.5b00004"
Target: NaV1.7
Cell Type: HEK-293
Application: High-throughput screening
132
Zhang D, Gopalakrishnan SM, Freiberg G, Surowy CS. A thallium transport FLIPR-based assay for the identification of KCC2-positive modulators. J Biomol Screen. 2010 Feb;15(2):177-84. doi: 10.1177/1087057109355708
Target: KCC2
Cell Type: HEK-293
Application: High-throughput screening
133
Niswender CM, Johnson KA, Luo Q, Ayala JE, Kim C, Conn PJ, Weaver CD. A novel assay of Gi/o-linked G protein-coupled receptor coupling to potassium channels provides new insights into the pharmacology of the group III metabotropic glutamate receptors. Mol Pharmacol. 2008 Apr;73(4):1213-24. doi: 10.1124/mol.107.041053
Target: Metabotropic Glutamate receptors, Muscarinic receptors
Cell Type: HEK-293
Application: High-throughput screening
134
Delpire E, Days E, Lewis LM, Mi D, Kim K, Lindsley CW, Weaver CD. Small-molecule screen identifies inhibitors of the neuronal K-Cl cotransporter KCC2. Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5383-8. doi: 10.1073/pnas.0812756106
Target: KCC2
Cell Type: HEK-293
Application: High-throughput screening
135
Schmalhofer, William A et al. “A pharmacologically validated, high-capacity, functional thallium flux assay for the human Ether-à-go-go related gene potassium channel.” Assay and drug development technologies vol. 8,6 (2010): 714-26.
Target: Kv11.1 (hERG)
Application: High-throughput screening
136
Qunies AM, Spitznagel BD, Du Y, Peprah PK, Mohamed YK, Weaver CD, Emmitte KA. Structure–Activity Relationship Studies in a Series of Xanthine Inhibitors of SLACK Potassium Channels. Molecules. 2024; 29(11):2437.
Target: SLICK, Maxi-K, CaV3.2, GIRK1/2, Kv11.1 (hERG), Kv2.1, Kv7.2, NaV1.7, TASK-1
Cell Type: CHO, HEK-293
Application: High-throughput screening
137
Zhao, Yongxiang, et al. "Inhibitory and transport mechanisms of the human cation-chloride cotransport KCC1." BioRxiv (2020): 2020-07.
Target: KCC1
Application: Liposomal assays
138
Egly, Christian L., et al. "A High-Throughput Screening Assay to Identify Drugs that Can Treat Long QT Syndrome Caused by Trafficking-Deficient KV11. 1 (hERG) Variants." Molecular Pharmacology 101.4 (2022): 236-245.
Target: Kv11.1 (hERG)
Cell Type: HEK-293
Application: High-throughput screening
139
Prael Iii, Francis J., et al. "Discovery of small molecule KCC2 potentiators which attenuate in vitro seizure-like activity in cultured neurons." Frontiers in cell and developmental biology 10 (2022): 912812.
Target: KCC2
Cell Type: HEK-293
Application: High-throughput screening
140
Vouga, Alexandre Gerard. Molecular Determinants of BK Channel Gating and Pharmacology. Temple University, 2021.
Target: BK
Application: High-throughput screening
141
Smith, Emery, et al. "Protocol for Kinetic Mode Potassium Channel Assays on Common Plate Readers and Microscopes." SLAS Discovery (2024): 100148.
Target: Kir3.1, Kir3.2, Kir4.1, THIK-1
Cell Type: CHO, HEK-293
Application: High-throughput screening, High-content screening
142
Lei, Xia et al. “Differential Activity of Orthosteric Agonists and Allosteric Modulators at Metabotropic Glutamate Receptor 7.” Molecular pharmacology vol. 104,1 (2023): 17-27.
Target: Glutamate receptors
Cell Type: HEK-293
Application: High-throughput screening
143
Lyon, Maximilian et al. “A selective inhibitor of the sperm-specific potassium channel SLO3 impairs human sperm function.” Proceedings of the National Academy of Sciences of the United States of America vol. 120,4 (2023): e2212338120.
Target: BK, KCa5
Cell Type: HEK-293
Application: High-throughput screening
144
Dutter, Brendan F., et al. "Rhodol-based thallium sensors for cellular imaging of potassium channel activity." Organic & biomolecular chemistry 16.31 (2018): 5575-5579.
Target: Kir3.1, Kir3.2
Cell Type: HEK-293
Application: High-throughput screening
145
McClenahan, Samantha J et al. “VU6036720: The First Potent and Selective In Vitro Inhibitor of Heteromeric Kir4.1/5.1 Inward Rectifier Potassium Channels.” Molecular pharmacology vol. 101,5 (2022): 357-370. doi:10.1124/molpharm.121.000464
Target: Kir4.1, Kir5.1
Cell Type: HEK-293
Application: High-throughput screening
146
Tay B, Stewart TA, Davis FM, Deuis JR, Vetter I (2019) Development of a high-throughput fluorescent no-wash sodium influx assay. PLOS ONE 14(3): e0213751.
Target: NaV1.1, NaV1.2, NaV1.3, NaV1.4, NaV1.5, NaV1.6, NaV1.7, NaV1.8, NaV1.9
Cell Type: HEK-293
Application: High-throughput screening
147
Mayr, Christian et al. “Ouabain at nanomolar concentrations is cytotoxic for biliary tract cancer cells.” PloS one vol. 18,6 e0287769. 30 Jun. 2023
Target: Na+/K+-ATPase
Cell Type: Cancer cells
Application: Fluorescence plate reader
148
Wang, Shuyan et al. “Protein-Loaded Cellular Nanosponges for Dual-Biomimicry Neurotoxin Countermeasure.” Small (Weinheim an der Bergstrasse, Germany), e2309635. 21 Nov. 2023
Target: Nav Channels
Cell Type: Neurons
Application: Fluorescence plate reader
149
Saurabh, Kumar et al. “Sphingosine 1-Phosphate Activates S1PR3 to Induce a Proinflammatory Phenotype in Human Myometrial Cells.” Endocrinology vol. 164,6 (2023)
Target: Sphingosine 1-phosphate receptor 3
Cell Type: Myometrial cells
Application: Fluorescence plate reader
150
Estevez, Irving, et al. "RIPK3 promotes neuronal survival by suppressing excitatory neurotransmission during CNS viral infection." bioRxiv (2024): 2024-04.
Target: NMDA receptor
Cell Type: Neurons
151
Malik, Manasi, et al. "Naturally occurring genetic variants in the oxytocin receptor alter receptor signaling profiles." ACS Pharmacology & Translational Science 4.5 (2021): 1543-1555.
Target: Oxytocin receptor
Cell Type: HEK-293
Application: Fluorescence plate reader
152
Smith, Emery, et al. "Protocol for Kinetic Mode Potassium Channel Assays on Common Plate Readers and Microscopes." SLAS Discovery (2024): 100148.
Target: Kir3.1, Kir3.2, Kir4.1, THIK-1
Cell Type: CHO, HEK-293
Application: High-throughput screening, High-content screening
153
Sharma, Piyush, et al. "Rapid metabolic regulation of a novel arginine methylation of KCa3. 1 attenuates T cell exhaustion." bioRxiv (2024): 2024-05.
Target: KCa3.1
Cell Type: T cells
Application: Flow cytometry
154
Macias-Contreras, Miguel, Jessica Granados, and Derek Hernandez. "ION Thallos-HTL: a fluorescent thallium indicator that enables cell-selective and localizable thallium flux assays." Organic & Biomolecular Chemistry (2024).
Cell Type: HeLa cells, HEK-293
Application: High-throughput screening, Fluorescence microscopy
155