

IPG-4 TMA⁺ SALT

Materials Needed			
Name	Volume	Containers	Storage
IPG-4 TMA ⁺ salt (50 or 500 µg vial)	Dry	1	-20° C
Deionized water (not provided)			
Assay Buffer (not provided)			

Description

ION Potassium Green - 4 (IPG-4) is a yellow-green fluorescent, intracellular potassium (K⁺) indicator with Ex/Em: 525 nm/545 nm with high selectivity for K⁺ over Na⁺ (8:1). IPG-4 is best suited to detect large changes in intracellular K⁺ concentration. IPG-4 is our highest affinity potassium indicator (K_d ~ 7 mM).

IPG-4 TMA⁺ salt, the membrane-impermeable variant, is best suited to detect small changes in K⁺ concentrations in low concentration K⁺ environments, like extracellular medium. The salt variant is commonly used to monitor changes in extracellular K⁺ in microbial culture systems.

Laboratory Procedures

The following protocol provides general guidelines for using this dye to measure potassium concentrations in solutions. **Important note:** IPG-4 TMA⁺ salt does not dissolve well when buffer is added directly to the vial. Always dissolve the dye in deionized water, before diluting in your buffer of choice.

- 1. Dissolve IPG-4 TMA⁺ salt in **deionized water** (not provided) to the desired stock concentration (e.g. 300 µM).
- 2. Make a buffer (e.g. HBSS) solution with a high concentration of the monovalent cation (e.g. K⁺) to be studied.
- 3. Make another buffer solution that does not contain the monovalent cation of interest.
- 4. Dilute the IPG-4 TMA⁺ stock concentration to the same working concentration in both buffer solutions (e.g. 3 μM).
- 5. Place 200 μ L of the high cation concentration solution in the first well, column 1. Add 100 μ L of the cation-free concentration solution to the rest of the wells in the same row.
- 6. Take 100 μL of the high cation solution and add it to the 100 μL of cation-free solution in the next well, column 2. Mix evenly, take 100 μL of this solution and add it to the following well in column 3.
- 7. Repeat these steps until column 11. Once solution for column 11 is mixed evenly, discard 100 μL. Make sure solution in column 12 is only the cation-free solution.
- 8. Acquire fluorescence read out for the wells using an excitation of ~525 nm and emission of ~545 nm.

Instructions

Example Results

Figure 1. Excitation and emission spectra of IPG-4. Measured in sodium bicarbonate buffer. Maxima are labeled at the top of each curve.

Figure 3. IPG-4 response to monovalent cations. The maximum relative fluorescence intensity Is measured in solutions comprised of 140 mM TMACI, 10 mM TRIS-HCI, 3 μ M IPG-4 TMA⁺ salt, and varying total monovalent ion concentrations. F₀ represents the fluorescence of an ion-free reference solution.

