

ICR-1 AM

Table 1 - Materials Needed	Most Items Available from ION Biosciences		
Name	Volume	Description/Purpose	
ICR-1 AM (50 μg vial)	Dry - 1 Vial	Membrane Permeable Calcium Dye Indicator	
DMSO ¹	25 μL	Solvent for Dissolution of Dye	
100X Pluronic F-127 solution ²	50 μL	Biocompatible Surfactant for Dye Loading	
100X Probenecid solution (optional) ³	50 μL	Intracellular Dye Retention Aid	
Assay Buffer - We Suggest One of the Following:			
⇒ 1X HEPES-Buffered Hank's Balanced Salt Solution	5 mL	1X - Ready to Use Assay Buffer	
⇒ 10X Brilliant Assay Buffer	0.5 mL	10X - Concentrated Assay Buffer	
Water	As Needed	Dilution of 10X Assay Buffer (if used)	

Description

ION Calcium Red - 1 (ICR-1) is a red fluorescent (Ex/Em 580nm/660nm) calcium (Ca²⁺) indicator for intracellular Ca²⁺ measurements. ICR-1's long-wavelength emission and a large Stokes shift reduces contributions of autofluorescence, making ICR-1 AM optimal for cellular and tissue imaging applications. ICR-1 can also be multiplexed with GFP-labeled cells or other green fluorophores commonly used in experiments. Unlike some other red fluorescent Ca²⁺ indicators, ICR-1 does not accumulate in the mitochondria. Data supporting fluorescence lifetime imaging and multiphoton imaging capabilities have also been demonstrated.

Laboratory Procedures

The following protocol provides general guidelines for using this dye to measure intracellular calcium. All loading conditions (dye concentration, temperature, and time) should be optimized for your specific assay, application, and instrumentation. Recommended dye loading concentration for ICR-1 AM is \sim 10 μ M.

- 1. Allow all reagents to warm to room temperature before proceeding.
- 2. Add 25 µL DMSO¹ to the tube containing ICR-1 AM.
- 3. Vortex until ICR-1 AM is fully dissolved. Centrifuge briefly to collect all contents at the tube bottom.
- 4. Add the appropriate volume (see **Table 2**, next page) of 1X Assay Buffer to a 15 mL conical tube. If using 10X Assay Buffer, add the appropriate volume of Water (**Table 2**) and 1 mL of 10X Assay Buffer to a 15 mL conical tube.
- 5. Add 50 μ L of 100X Pluronic F-127² solution to the conical tube from **step 4**.

Procedure Continues on Next Page

Laboratory Procedures (continued)

- 6. (Optional) Add 50 μ L of 100X Probenecid³ solution to the conical tube from **step 5**.
- 7. Vortex conical tube from **step 6** briefly to mix.
- 8. Add the entire contents of the ICR-1 AM in DMSO solution from **step 3** to the conical tube from **step 7** to make the **Dye Loading Solution**⁴.
- 9. Vortex the **Dye Loading Solution**⁴ from **step 8** briefly to mix.

Table 2	Dye Loading Solution ⁴	1X Assay Buffer		10X Assay Buffer	
Name		Method A	Method B	Method C	Method D
ICR-1 AM in DMS	CO ¹ solution	25 μL	25 μL	25 μL	25 μL
100X Pluronic F-	127 ² solution	50 μL	50 μL	50 μL	50 μL
100X Probenecid	³ solution	50 μL	-	50 μL	-
1X HEPES-Buffer	ed Hanks Balanced Salt Solution	4.9 mL	4.95 mL	-	-
10X Brilliant Ass	ay Buffer	-	-	0.5 mL	0.5 mL
Water		-	-	4.4 mL	4.45 mL
Total		5 mL	5 mL	5 mL	5 mL

- 10. Remove the cell culture medium and add the **Dye Loading Solution**⁴ from **step 9**. Recommend volumes are: 35 mm dish or 6-well plate, 1.5 mL; 96-well plate, 100 μL; 384-well plate, 20 μL.⁵
- 11. Incubate in a cell culture incubator at 37°C for ~ 4 hours.
- 12. Conduct a wash⁵ step to remove the **Dye Loading Solution⁴** and replace with cell culture medium or assay buffer. Repeat, if necessary, to completely remove extracellular dye.
- 13. Acquire data using a fluorescence microscope⁶ equipped with Texas Red filter or a fluorescence plate reader using an excitation wavelength of ~585 nm, an emission wavelength of ~645 nm and an acquisition frequency of 1-10 Hz⁶. See **Table 3** below for recommended settings.

Table 3	Recommended Instrument Settings		
Setting	Recommendation		
Read Mode (Plate Readers)	'Bottom' read mode only		
Ex/Em wavelengths ⁶	~585 nm/645 nm		
Cutoff wavelength	610 nm		
Filter selection	Texas Red		
Contact support@ionbiosciences.com for additional recommendations and guidance on optimizing to your application.			

Instructions

Laboratory Procedures - Footnotes

- DMSO is hygroscopic and should be stored tightly closed. Wet solvent causes difficulties with dissolution of the dye.
- Pluronic F-127 is a biocompatible surfactant that aids in dye dissolution, ensuring equitable dye distribution and cellular loading.
- Probenecid is an anion transport inhibitor that improves intracellular dye retention. Although it is not required for all cell types and dyes, it is recommended in most cases to optimize assay performance.
- The Dye Loading Solution should be used within 2 hours of dye addition for best results.
- In some cases, a no wash format works best. If a no wash format is indicated for your application, we recommend doubling the concentration of 100X Pluronic F-127 and 100X Probenecid in your dye loading buffer.
- To prevent bleed-through or spectral overlap, the Ex/Em wavelengths may need to be optimized by broadening the interval between the wavelengths.

Additional Information

Dye indicator and buffer reagents can be purchased either directly from our website or by contacting our Sales Department. Custom and bulk sizes are also available. Contact Sales for more information.

Table 4	Available Reagents	Available S	Available Sizes			
Name		Size	Catalog #			
		500 μg x 1 Vial	1091C			
ICR-1 AM		50 μg x 10 Vials	1091F			
		50 μg x 3 Vials	1091G			
100X Pluronic F-127	Solution	10 mL Bottle	7601A			
100X Probenecid So	lution	10 mL Bottle	7300P-100			
1X HEPES-Buffered I	Hank's Balanced Salt Solution (1X HHBSS)	100 mL Bottle	7001			
10X Brilliant Assay E	Buffer	10 mL Bottle	7010X			

4/1/2025